Enhancing Clinics with AI-Driven Dermatology
Large language models (LLMs) are seen to have tremendous potential in advancing medical diagnosis recently, particularly in dermatological diagnosis, which is a very important task as skin and subcutaneous diseases rank high among the leading contributors to the global burden of nonfatal diseases.
Here we present SkinGPT-4, which is an interactive dermatology diagnostic system based on multimodal large language models. We have aligned a pre-trained vision transformer with an LLM named Llama-2-13b-chat by collecting an extensive collection of skin disease images (comprising 52,929 publicly available and proprietary images) along with clinical concepts and doctors’ notes, and designing a two-step training strategy.
We have quantitatively evaluated SkinGPT-4 on 150 real-life cases with board-certified dermatologists. With SkinGPT-4, users could upload their own skin photos for diagnosis, and the system could autonomously evaluate the images, identify the characteristics and categories of the skin conditions, perform in-depth analysis, and provide interactive treatment recommendations.
With the widespread application of artificial intelligence (AI), particularly deep learning (DL) and vision-based large language models (VLLMs), in skin disease diagnosis, the need for interpretability becomes crucial.
However, existing dermatology datasets are limited in their inclusion of concept-level meta-labels, and none offer rich medical descriptions in natural language.
This deficiency impedes the advancement of LLM-based methods in dermatological diagnosis. To address this gap and provide a meticulously annotated dermatology dataset with comprehensive natural language descriptions, we introduce SkinCAP: a multi-modal dermatology dataset annotated with rich medical captions.
SkinCAP comprises 4,000 images sourced from the Fitzpatrick 17k skin disease dataset and the Diverse Dermatology Images dataset, annotated by board-certified dermatologists to provide extensive medical descriptions and captions. Notably, SkinCAP represents the world’s first such dataset and is publicly available.
OUR PARTNERS